

福建省地方计量技术规范

JJF(闽)1157—2024

鞋带耐磨试验设备校准规范

Calibration Specification of Abrasion Resistance Testing Equipments for Shoe Laces

2024-05-30 发布

2024-08-30 实施

鞋带耐磨试验设备校准规范

Calibration Specification of Abrasion Resistance
Testing Equipments for Shoe Laces

JJF (闽) 1157—2024

本规范主要起草人:

傅美缘(石狮市质量计量检测所)

吴家平(泉州市计量所)

参加起草人:

黄 瓒(晋江市质量计量检测所)

郑福尔(石狮市中纺学服装及配饰产业研究院)

陈遵胜(石狮市质量计量检测所)

蔡 涛(石狮市中纺学服装及配饰产业研究院)

王 喆〔中联品检(福建)检测服务有限公司〕

目 录

引言	(II)
1 范围	(1)
2 引用文件	(1)
3 概述	(1)
4 计量特性	(2)
4.1 夹具拉力组件间距离 · · · · · · · · · · · · · · · · · · ·	(2)
4.2 拉力组件质量	(2)
4.3 可移动夹具移动距离	(2)
4.4 往复运动频率	(2)
4.5 计数误差	(2)
5 校准条件	(2)
5.1 环境条件	(2)
5.2 测量标准及其他设备	(2)
6 校准项目和校准方法	(2)
6.1 校准项目	(2)
6.2 校准方法	(3)
7 校准结果表达	(5)
8 复校时间间隔	(5)
附录 A 鞋带耐磨试验设备校准记录参考格式 ······	(6)
附录 B 鞋带耐磨试验设备校准证书内页参考格式	(7)
附录 C 测量结果不确定度评定示例······	(8)

引 言

本规范依据 JJF 1001—2011《通用计量术语及定义》、JJF 1059.1—2012《测量不确定度评定与表示》、JJF 1071—2010《国家计量校准规范编写规则》为基础性系列规范进行编制。

本规范主要参考 GB/T 3903.36—2008《鞋类 鞋带试验方法 耐磨性能》编制而成。本规范为首次制定。

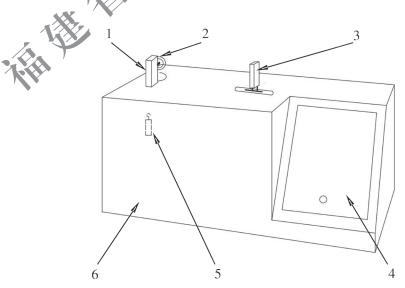
鞋带耐磨试验设备校准规范

1 范围

本规范适用于鞋带耐磨试验设备的校准。

2 引用文件

本规范引用下列文件:


GB/T 3903.36-2008 鞋类 鞋带试验方法 耐磨性能

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注口期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 概述

鞋带耐磨试验设备是 GB/T 3903.36—2008《鞋类 鞋带试验方法 耐磨性能》规定的测定鞋带耐磨性能的试验设备。鞋带耐磨试验设备一般由箱体、工位部件、控制显示器等组成;工位部件包括静止夹具、固定滑轮、可移动夹具、拉力组件等;鞋带耐磨试验设备通常有一个工位或多个工位、每个工位可独立操作、互不干扰。图 1 为一种鞋带耐磨试验设备结构示意图。

试验用鞋带两端固定在静止夹具、可移动夹具、拉力组件上,施加一定拉力,通过电机驱动使可移动夹具往复运动摩擦鞋带至断裂,记录往复摩擦次数,评估鞋带耐磨性能。

1-静止夹具 2-固定滑轮 3-可移动夹具 4-控制显示器 5-拉力组件 6-箱体

图 1 鞋带耐磨试验设备结构示意图

4 计量特性

4.1 夹具拉力组件间距离 夹具拉力组件间距离: (35±5) mm。

4.2 拉力组件质量 拉力组件质量: (250±3)g。

4.3 可移动夹具移动距离 可移动夹具移动距离: (35±2) mm。

存作 4.4 往复运动频率 往复运动频率(往返计1次): (60±6)次/min。

4.5 计数误差 计数最大允许误差: ±0.5%。

5 校准条件

5.1 环境条件

温度: (10 ~ 35) ℃。

相对湿度:不大于80%。

校准时不得有影响校准结果的振动

5.2 测量标准及其他设备

校准用标准计量器具见表1。

表 1 测量标准及其他设备

序号	校准用标准器具	技术指标					
1	钢直尺	测量范围: (0 ~ 500) mm, 最大允许误差: ±0.15 mm					
2	电子天平	最大秤量: 300 g, 分度值: 0.01 g, 准确度等级: III					
3	转速表(具有计数功能)	准确度等级: 0.1 级					
注:也可采用满足测量不确定度要求的其他标准计量器具。							

6 校准项目和校准方法

6.1 校准项目

校准项目见表 2。

表	2	校准项目	╡
~~	_	コス/エージョ	_

序 号	校 准 项 目
1	夹具拉力组件间距离
2	拉力组件质量
3	可移动夹具移动距离
4	往复运动频率
5	计数误差

6.2 校准方法

6.2.1 校准前准备

接通电源,目测观察鞋带耐磨试验设备是否正常运行。鞋带耐磨试验设备的外形结构完好,有名称、规格型号、制造厂及出厂编号等标记。

零部件装配牢固。鞋带耐磨试验设备水平放置,活动部件运动平稳、灵活,无卡滞、跳动等现象。

用手动调节,使可移动夹具调整到与静止夹具距离在(230~330)mm范围内。

6.2.2 夹具拉力组件间距离校准

将鞋带穿过滑轮,在鞋带较低垂直部分的末端悬挂重物进行施加拉力。在同一水平面上,测量位置如图 2 所示,用钢直尺测量静止夹具中心到拉力组件中心点的距离,重复测量 3 次,按式 (1) 计算平均值作为测量结果。

$$L_{\rm l} = \overline{L} \tag{1}$$

式中:

 L_1 ——夹具拉力组件间距离的实际值, mm;

 \overline{L} — 英具拉力组件间距离的 3 次测量值的平均值,mm。

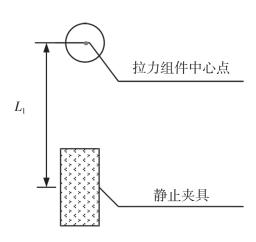


图 2 测量夹具拉力组件间距离示意图

6.2.3 拉力组件质量校准

采用电子天平测量拉力组件质量的方法进行校准,重复测量 3 次,取 3 次测得值的平均值作为测量结果,按式 (2) 计算其示值误差。

$$\Delta m = m_a - \overline{m_b} \tag{2}$$

式中:

 Δm ——拉力组件质量示值误差, g;

 m_a ——拉力组件质量标称值, g;

 \overline{m}_{b} ——电子天平测量拉力组件质量 3 次测得值的平均值, g。

6.2.4 可移动夹具移动距离校准

用手动调节,将可移动夹具调整到与静止夹具最短距离,用记号笔标志可移动夹具位置,再将可移动夹具调整到与静止夹具最远距离,用记号笔标志可移动夹具位置,使用钢直尺测量两个记号标志间的水平距离 L_2 ,测量位置如图 3 所示,重复测量 3 次,按式 (3) 计算平均值作为测量结果。

$$L_2 = \overline{L_w} \tag{3}$$

式中:

 L_2 ——可移动夹具移动距离的实际值、mm;

 $\overline{L_{m}}$ — 可移动夹具移动距离的 3 次测量值的平均值,mm。

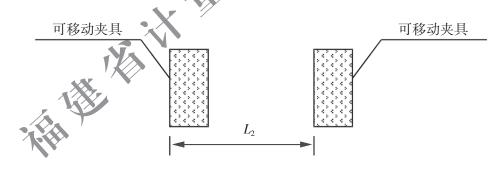


图 3 测量可移动夹具移动距离示意图

6.2.5 往复运动频率校准

鞋带耐磨试验设备可移动夹具运动频率 n_a 设为 60 次 /min,将反光条贴在可移动夹具边缘,启动鞋带耐磨试验设备稳定后,使用转速表测量,重复测量 3 次,取 3 次测得值的平均值作为测量结果,按式 (4) 计算其示值误差。

$$\Delta n = n_a - \overline{n_b} \tag{4}$$

式中:

Δn——可移动夹具往复运动频率的示值误差,次/min;

 n_a ——鞋带耐磨试验设备的运动频率,次/min;

 n_b ——转速表 3 次测量值的平均值,次/min。

6.2.6 计数误差校准

鞋带耐磨试验设备试验次数 N_a 设为不少于500次,在可移动夹具边缘贴反光条、 启动鞋带耐磨试验设备, 同步用带计数功能的转速表测量, 重复测量 3 次, 取 3 次测 量值的平均值作为鞋带耐磨试验设备计数的测量结果,按式(5)计算鞋带耐磨试验设 备的计数误差。

$$\delta = \frac{N_a - \overline{N_b}}{N_b} \times 100\%$$
式中:
 δ ——计数误差,%;
 N_a ——预置设备试验次数,次;
 $\overline{N_b}$ ——转速表 3 次测量值的平均值,次。
校准结果表达
校准证书或校准报告至少包含以下信息:
a) 标题,如"校准证书";
b) 实验室名称和地址;
c) 进行校准的地点;
d) 证书或报告的唯一性标识(如编号)、每页及总页数的标识;

7 校准结果表达

- e) 送校单位的名称和地址;
- f)被校对象的描述和明确标识;
- g) 进行校准的日期, 如果与校准结果的有效性和应用相关时, 应说明被校对象的 接收日期:
 - h) 校准所依据的技术规范的标识, 包括名称及代号:
 - i) 校准所用测量标准的溯源性及有效性说明;
 - i) 校准环境的描述:
 - k) 校准结果及其测量不确定度的说明;
 - 1)校准证书或校准报告签发人的签名或等效标识,以及签发日期;
 - m) 校准结果仅对校准对象有效的声明;
 - n) 未经实验室书面批准, 不得部分复制校准证书或报告的声明。

8 复校时间间隔

复校时间间隔可由使用者根据实际使用情况自主决定,建议不超过1年。

附录 A

鞋带耐磨试验设备校准记录参考格式

	委托单位	位							记	录编号				
样	名	称							型-	号规格				
品	制造	上							出	厂编号				
	名	称	型号规格	出	厂编号	7	计量特		溯	源机构	证=	 持編号	有效	日期
标												1	77	
准													V	
器							-							
										1	4			
	环境条件	 件							校	准地点				
	校准依							•	7					
外观		————————————————————————————————————	<u>-</u> - □不往	·········· 符合				. X	7					
			标称	值		实测	值(m	n))				/ L ==		
1. 5			(mn	n)	1	2	3	平均	9值	- ¥!	则量	结果不确	角定度	
	间距离	ĵ J			<i>(</i>)	. 1				U	=	mm,	k = 2	2
			标称	值』		实测	」 N值(g)		示值误	差			
2. 扌	立力组件	质量	(g		1 2		3	平均	9值	(g)	一 一		吴差不确定度	
			Ń	1	•							<i>U</i> =	g, <i>l</i>	k = 2
			标称	值	实测值(mm)									
3. 🖟	可移动夹	· ·	(mn	ŀ	1 2 3 平均值			9值	- 测量结果不确定度					
	动距离			U	=	mm,	k = 2	2						
			设定	値		 实测(直 (次 /	min)		示值误	差			
			(次/r	}	1	2	3	平均	9值	(次/mi		示值误	差不確	定度
4. 1	主复运动	力频率										<i>U</i> =	次/	min,
													k = 2	
			设定	值		 实测]值(次	()		计数误差) I W) I		
5. 计数误差			(次	()	1	2	3	平均	9值	(%)		计数误	是差不确定度	
												U_{rel} =	%,	k = 2
名	注									证书编	号			
校准员		校)	 作日期			k	玄验员			核	·····································			

附录 B

鞋带耐磨试验设备校准证书内页参考格式

校准数据/结果:

- 一、外观检查:
- 二、校准结果:

序号	校准项目	校	准结果
1	夹具拉力组件间距离	实测值	测量结果不确定度
1	光 兵征刀组件问距离	mm	<i>U</i> = mm, <i>k</i> =2
2	拉力组件质量	示值误差	永值误差不确定度
2	14月41日灰里	g	<i>U</i> = g, <i>k</i> =2
3	可移动夹具移动距离	实测值	测量结果不确定度
3	可例例大共物切距向	mm	U= mm, $k=2$
4	往复运动频率	示值误差	示值误差不确定度
4	任复运动频率	次/min	U= 次/min, k=2
5	计数误差	计数误差	计数误差不确定度
	月奴庆左	%	$U_{ m rel}$ = %, k =2
说明:			
	Kiii		

附录 C

测量结果不确定度评定示例

C.1 夹具拉力组件间距离测量结果不确定度评定

C.1.1 测量方法

在环境温度 $(10 \sim 35)$ $^{\circ}$ $^{\circ}$ 、相对湿度 $\leq 80\%$ 的条件下,用钢直尺测量静止夹具中心到拉力组件中心点的距离,重复测量 3 次,取 3 次测量值的平均值作为夹具拉力组件间距离的测量结果。

C.1.2 测量模型

$$L_1 = \overline{L}$$

式中:

 L_1 ——夹具拉力组件间距离的实际值, mm;

 \overline{L} ——夹具拉力组件间距离 3 次测量值的平均值,mm。

灵敏系数:
$$c = \frac{\partial L_1}{\partial L} = 1$$

- C.1.3 标准不确定度分量的评定
- C.1.3.1 标准不确定度分量来源

输入量 \overline{L} 的标准不确定度 $u(\overline{L})$ 的不确定度来源主要有:测量重复性引入的不确定度 $u_1(\overline{L})$,由 A 类方法评定 $u_1(\overline{L})$; 钢直尺准确度引入的不确定度 $u_2(\overline{L})$,由 B 类方法评定 $u_2(\overline{L})$ 。

C.1.3.2 测量重复性引入的不确定度分量 $u_1(\overline{L})$

选取一种带耐磨试验设备,用钢直尺对夹具拉力组件间距离连续进行10次测量,得到测量列如表 C.1.1 所示。

序号 1 2 3 5 6 8 10 测量值 33.5 33.0 33.5 33.0 33.5 33.0 33.5 33.0 33.5 33.5 (mm)

表 C.1.1 夹具拉力组件间距离测量值

其所求的平均值: $\overline{L} = \frac{1}{10} \sum_{i=1}^{10} L_i = 33.3 \text{ mm}$

单次实验标准偏差,由贝塞尔法计算:
$$s = \sqrt{\frac{\sum\limits_{i=1}^{10}(L_i - \overline{L})^2}{n-1}} = 0.26 \text{ mm}$$

实际测量中是在重复性条件下测量 3 次,取其平均值作为测量结果。

则
$$u_1(\overline{L}) = \frac{s}{\sqrt{3}} = 0.15 \text{ mm}$$

C.1.3.3 钢直尺准确度引入的不确定度分量 $u_2(\overline{L})$

钢直尺的最大允许误差 ±0.15 mm, 估计为均匀分布, 其引入的标准不确定度为:

$$u_2(\overline{L}) = \frac{a}{k} = \frac{0.15}{\sqrt{3}} \,\text{mm} = 0.09 \,\text{mm}$$

- C.1.4 合成标准不确定度的评定
- C.1.4.1 标准不确定度汇总

标准不确定度汇总见表 C.1.2。

标准不确定度分量 $u(x_i)$	不确定度来源	标准不确定度 (mm)	C_{i}	$ c_i u(x_i)$ (mm)
$u_1(\overline{L})$	测量重复性	0.15	1	0.15
$u_2(\overline{L})$	钢直尺准确度	0.09	1	0.09

C.1.4.2 合成标准不确定度的计算

由于各影响量彼此独立不相关,因此,合成标准不确定度: $u_{\rm c}(L_{\rm l})=u_{\rm c}(\overline{L})=\sqrt{\left[c\bullet u_{\rm l}(\overline{L})\right]^2+\left[c\bullet u_{\rm 2}(\overline{L})\right]^2}=0.\ 17\ {\rm mm}$

$$u_{c}(L_{1}) = u_{c}(\overline{L}) = \sqrt{\left[c \cdot u_{1}(\overline{L})\right]^{2} + \left[c \cdot u_{2}(\overline{L})\right]^{2}} = 0.17 \text{ mm}$$

C.1.5 扩展不确定度的评定

取包含因子 k=2,则 $U=k \cdot u_c=0.4$ mm

C.1.6 扩展不确定度的报告与表示

夹具拉力组件间距离的测量结果为:

$$L_1 = 33.5 \text{ mm}, U = 0.4 \text{ mm}, k = 2_{\circ}$$

C.2 拉力组件质量示值误差测量结果不确定度评定

C.2.1 测量方法

在环境温度(10~35)℃、相对湿度≤80%的条件下,采用电子天平测量拉力组

件质量的方法进行校准,重复测量 3 次,取 3 次测量值的平均值作为拉力组件质量的测量结果,计算其示值误差。

C.2.2 测量模型

$$\Delta m = m_a - \overline{m_b}$$

式中:

Δm ——拉力组件质量示值误差, g;

 m_a ——拉力组件质量标称值, g;

 $\overline{m_b}$ ——电子天平测量拉力组件质量 3 次测量值的平均值, g_o

灵敏系数:
$$c = \frac{\partial \Delta m}{\partial \overline{m_b}} = -1$$

C.2.3 标准不确定度分量的评定

C.2.3.1 标准不确定度分量来源

输入量 $\overline{m_b}$ 的标准不确定度 $u(\overline{m_b})$ 的不确定度来源主要有:测量重复性引入的不确定度 $u_1(\overline{m_b})$,由 A 类方法评定 $u_1(\overline{m_b})$;电子类平准确度引入的不确定度 $u_2(\overline{m_b})$,由 B 类方法评定 $u_2(\overline{m_b})$ 。

C.2.3.2 测量重复性引入的不确定度分量 $u_1(\overline{m_b})$

选取一台鞋带耐磨试验设备,用电子天平对施加拉力的拉力组件质量进行连续 10 次测量,得到测量列如表 C.2.1 所示。

2 3 4 5 250.01 250.00 250.02 250.00 250.00 序 号 10 测量值(g) 250.00 250.02 250.01 250.03 250.02

表 C.2.1 拉力组件质量测量值

其所求的平均值: $\overline{m_b} = \frac{1}{10} \sum_{i=1}^{10} m_{bi} = 250.01 \text{ g}$

单次实验标准偏差,由贝塞尔法计算:
$$s = \sqrt{\frac{\sum\limits_{i=1}^{10} (m_{bi} - \overline{m_{b}})^{2}}{n-1}} = 0.01 \text{ g}$$

实际测量中是在重复性条件下测量 3 次,取其平均值作为测量结果。

று
$$u_1(\overline{m_b}) = \frac{s}{\sqrt{3}} = 0.01$$
 g

C.2.3.3 电子天平准确度引入的不确定度分量 $u_2(\overline{m_b})$

电子天平的测量范围(0~300)g、d=0.01g、准确度等级 , 最大允许误差 ±0.15g。估计为均匀分布,其引入的标准不确定度为:

$$u_2(\overline{m_b}) = \frac{a}{k} = \frac{0.15}{\sqrt{3}} g = 0.09 g$$

- C.2.4 合成标准不确定度的评定
- C.2.4.1 标准不确定度汇总

标准不确定度汇总见表 C.2.2。

表 C.2.2 标准不确定度分量汇总表

标准不确定度分量 $u(x_i)$	不确定度来源	标准不确定度	c_{i}	$ c_i u(x_i)$
$u_1(\overline{m_b})$	测量重复性	0.01	-1	0.01
$u_2(\overline{m_b})$	电子天平准确度	0.09	-1	0.09

C.2.4.2 合成标准不确定度的计算。

由于各影响量彼此独立不相关。因此,合成标准不确定度:

$$u_{c}(\Delta m) = u_{c}(\overline{m_{b}}) = \sqrt{\left[c \cdot u_{1}(\overline{m_{b}})\right]^{2} + \left[c \cdot u_{2}(\overline{m_{b}})\right]^{2}} = 0.09 \text{ g}$$

C.2.5 扩展不确定度的评定

取包含因子 k = 2,则 $U = k \cdot u_c = 0.18$ g

C.2.6 扩展不确定度的报告与表示

拉力组件质量示值误差的测量结果为:

$$\Delta m = -0.01 \,\mathrm{g}, \ U = 0.18 \,\mathrm{g}, \ k = 2_{\circ}$$

C.3 可移动夹具移动距离测量结果不确定度评定

C.3.1 测量方法

在环境温度 (10 ~ 35) ℃、相对湿度 ≤ 80%的条件下,用手动调节,将可移动夹具调整到与静止夹具最短距离,用记号笔标志可移动夹具位置,再将可移动夹具调整到与静止夹具最远距离,用记号笔标志可移动夹具位置,测量标准采用钢直尺,对两个记号标志间的水平距离重复测量 3 次,取 3 次测量值的平均值作为可移动夹具移动距离的测量结果。

C.3.2 测量模型

$$L_2 = \overline{L_m}$$

式中:

 L_2 ——可移动夹具移动距离的实际值, mm;

 $\overline{L_m}$ ——可移动夹具移动距离 3 次测量值的平均值, mm_{\circ}

灵敏系数:
$$c = \frac{\partial L_2}{\partial \overline{L_m}} = 1$$

- C.3.3 标准不确定度分量的评定
- C.3.3.1 标准不确定度分量来源

输入量 $\overline{L_n}$ 引入的标准不确定度 $u(\overline{L_n})$ 来源主要有:测量重复性引入的不确定度 $u_1(\overline{L_m})$,由A类方法评定 $u_1(\overline{L_m})$;钢直尺准确度引入的不确定度 $u_2(\overline{L_m})$,由B类方法 评定 $u_2(L_m)_{\circ}$

C.3.3.2 测量重复性引入的不确定度分量 $u_1(\overline{L_m})$

选取一台鞋带耐磨试验设备,用钢直尺对可移动夹具移动距离连续进行10次测量, 得到测量列如表 C.3.1。

表 C.3.1 可移

序 号	1	2	3	4	5	6	7	8	9	10
测量值 (mm)	35.5	35.0	35.0	35.0	35.5	35.0	35.0	35.0	35.0	35.5

其所求的平均值:
$$L_m = \frac{1}{10} \sum_{i=1}^{10} L_{mi} = 35.15 \text{ mm}$$

其所求的平均值: $L_m = \frac{1}{10} \sum_{i=1}^{10} L_{mi} = 35.15 \text{ mm}$ 单次实验标准偏差,由贝塞尔法计算: $s = \sqrt{\frac{\sum\limits_{i=1}^{10} (L_{mi} - \overline{L_m})^2}{n-1}} = 0.24 \text{ mm}$

实际测量中是在重复性条件下测量 3 次,取其平均值作为测量结果。

则
$$u_1(\overline{L_m}) = \frac{s}{\sqrt{3}} = 0.14 \text{ mm}$$

C.3.3.3 钢直尺准确度引入的不确定度分量 $u_2(\overline{L_m})$

钢直尺最大允许误差 ±0.15 mm, 估计为均匀分布, 其引入的标准不确定度为:

$$u_2(\overline{L_m}) = \frac{a}{k} = \frac{0.15}{\sqrt{3}} \,\text{mm} = 0.09 \,\text{mm}$$

- C.3.4 合成标准不确定度的评定
- C.3.4.1 标准不确定度汇总

标准不确定度汇总见表 C.3.2。

表 C.3.2 标准不确定度汇总表

标准不确定度分量 $u(x_i)$	不确定度来源	标准不确定度 (mm)	c_{i}	$ c_i u(x_i)$ (mm)
$u_1(\overline{L_m})$	测量重复性	0.14	1	0.14
$u_2(\overline{L_m})$	钢直尺准确度	0.09	1	0.09

C.3.4.2 合成标准不确定度的计算

由于各影响量彼此独立不相关,因此,合成标准不确定度

$$u_{c}(L_{2}) = u_{c}(\overline{L_{m}}) = \sqrt{\left[c \cdot u_{1}(\overline{L_{m}})\right]^{2} + \left[c \cdot u_{2}(\overline{L_{m}})\right]^{2}} = 0.17 \text{ mm}$$

C.3.5 扩展不确定度的评定

取包含因子 k=2,则 $U=k\cdot u_c=0.4$ mm

C.3.6 扩展不确定度的报告与表示

可移动夹具移动距离的测量结果为

$$L_2 = 35.5 \text{ mm}, U = 0.4 \text{ mm}, k \neq 2_{\circ}$$

C.4 往复运动频率示值误差测量结果不确定度评定

C.4.1 测量方法

在环境温度(10~35) $^{\circ}$ 、相对湿度 \leq 80%的条件下,鞋带耐磨试验设备可移动夹具运动频率 n_a 设为60次/min,将反光条贴在可移动夹具边缘,启动鞋带耐磨试验设备稳定后,使用转速表测量,重复测量3次,取3次测量值的平均值作为往复运动频率的测量结果,计算其示值误差。

C.4.2 测量模型

$$\Delta n = n_a - \overline{n_b}$$

式中:

 Δn — 可移动夹具往复运动频率的示值误差,次/min;

 n_a ——鞋带耐磨试验设备的运动频率,次/min;

 $\overline{n_b}$ ——转速表 3 次测量值的平均值,次 /min。

灵敏系数:
$$c = \frac{\partial \Delta n}{\partial n_b} = -1$$

C.4.3 标准不确定度分量的评定

C.4.3.1 标准不确定度分量来源

输入量 $\overline{n_b}$ 的标准不确定度 $u(\overline{n_b})$ 的不确定度来源主要有:测量重复性引入的不确定度 $u_1(\overline{n_b})$,由 A 类方法评定 $u_1(\overline{n_b})$;转速表准确度引入的不确定度 $u_2(\overline{n_b})$,由 B 类方法评定 $u_2(\overline{n_b})$ 。

C.4.3.2 测量重复性引入的不确定度分量 $u_1(\overline{n_b})$

选取一台鞋带耐磨试验设备,用转速表对可移动夹具往复运动连续进行10次测量,得到测量列如表 C.4.1 所示。

									•	
序号	1	2	3	4	5	6	7	8	9	10
测量值 (次/min)	60.1	60.1	60.1	60.0	60.0	60.0	60.0	60.1	60.2	60.2

表 C.4.1 往复运动频率测量值

其所求的平均值: $\overline{n_b} = \frac{1}{10} \sum_{i=1}^{10} n_{bi} = 60.1$ 次/min

单次实验标准偏差,由贝塞尔法计算:
$$s = \sqrt{\frac{\sum\limits_{i=1}^{10} (n_{bi} - \overline{n_b})^2}{n-1}} = 0.08$$
次/min

实际测量中是在重复性条件下测量3次,取其平均值作为测量结果。

则
$$u_1(\overline{n_b}) = \frac{s}{\sqrt{3}} = 0.05$$
 次 /min

C.4.3.3 转速表准确度引入的不确定度分量 $u_2(\overline{n_b})$

转速表在 60 次 /min 测量点,最大允许误差 ± 0.06 次 /min,估计为均匀分布,其引入的标准不确定度为:

$$u_2(\overline{n_b}) = \frac{a}{k} = \frac{0.06}{\sqrt{3}} \, \text{K/min} = 0.03 \, \text{K/min}$$

C.4.4 合成标准不确定度的评定

C.4.4.1 标准不确定度汇总

标准不确定度汇总见表 C.4.2。

表 C.4.2 标准不确定度分量汇总表

标准不确定度分量 $u(x_i)$	不确定度来源	标准不确定度 (次 /min)		$ c_i u(x_i)$ (次/min)	
$u_1(\overline{n_b})$	测量重复性	0.05	-1	0.05	
$u_2(\overline{n_b})$	转速表准确度	0.03	-1	0.03	

C.4.4.2 合成标准不确定度的计算

由于各影响量彼此独立不相关,因此,合成标准不确定度:

$$u_{c}(\Delta n) = u_{c}(\overline{n_{b}}) = \sqrt{\left[c \cdot u_{1}(\overline{n_{b}})\right]^{2} + \left[c \cdot u_{2}(\overline{n_{b}})\right]^{2}} = 0.06\%/\text{min}$$

C.4.5 扩展不确定度的评定

取包含因子 k=2,则 $U=k \cdot u_c=0.2$ 次/min

C.4.6 扩展不确定度的报告与表示

往复运动频率示值误差的测量结果为:

$$\Delta n = -0.1 \text{ \% /min}, \ U = 0.2 \text{ \% /min}, \ k \neq 2$$

C.5 计数误差测量结果不确定度评定

C.5.1 测量方法

在环境温度 (10 ~ 35) $^{\circ}$ 、相对湿度 \leq 80%的条件下,鞋带耐磨试验设备试验次数 N_a 设为 500 次,在可移动夹具边缘贴反光条,启动鞋带耐磨试验设备,同步用带计数功能的转速表测量,重复测量 3 次,取 3 次测量值的平均值作为鞋带耐磨试验设备计数的测量结果、计算其示值误差。

C.5.2 测量模型

$$\Delta N = N_a$$
 - $\overline{N_b}$

式中:

 ΔN ——试验次数的示值误差,次;

 N_a ——预置设备试验次数,次;

 $\overline{N_h}$ ——转速表 3 次测量值的平均值,次。

灵敏系数:
$$c = \frac{\partial \Delta N}{\partial \overline{N_h}} = -1$$

C.5.3 标准不确定度分量的评定

C.5.3.1 标准不确定度分量来源

输入量 $\overline{N_b}$ 的标准不确定度 $u(\overline{N_b})$ 的不确定度来源主要有:测量重复性引入的不确

定度分量 $u_1(\overline{N_b})$,由 A 类方法评定 $u_1(\overline{N_b})$;具备计数功能转速表准确度引入的不确定度分量 $u_2(\overline{N_b})$,由 B 类方法评定 $u_2(\overline{N_b})$ 。

C.5.3.2 测量重复性引入的不确定度分量 $u_1(\overline{N_b})$

选取一台鞋带耐磨试验设备,用转速表连续进行10次测量,得到测量列如表 C.5.1 所示。

表 C.5.1 计数测量值

序 号	1	2	3	4	5	6	7	8	9	10
测量值 (次)	501	500	500	500	501	501	500	501	501	501

其所求的平均值:
$$\overline{N_b} = \frac{1}{10} \sum_{i=1}^{10} N_{bi} = 501$$
次

单次实验标准偏差,由贝塞尔法计算:

$$\sqrt{\frac{\sum_{i=1}^{10} (N_{bi} - N_b)^2}{n-1}} = 0.52\%$$

实际测量中是在重复性条件下测量3次,取其平均值作为测量结果。

则
$$u_1(\overline{N_b}) = \frac{s}{\sqrt{3}} = 0.30$$
 次

C.5.3.3 具备计数功能的转速表准确度引入的不确定度分量 $u_2(\overline{N_b})$

具备计数功能的转速表计数最大允许误差 ± 0.1%, 估计为均匀分布, 其引入的标准不确定度为:

$$u_2(\overline{N_b}) = \frac{a}{k} = \frac{0.5}{\sqrt{3}} \text{ // } = 0.29 \text{ // }$$

C.5.4 合成标准不确定度的评定

C.5.4.1 标准不确定度汇总

标准不确定度汇总见表 C.5.2。

表 C.5.2 标准不确定度汇总表

标准不确定度分量 $u(x_i)$	不确定度来源	标准不确定度 (次)	c_{i}	$ c_i u(x_i)$ (次)
$u_1(\overline{N_b})$	测量重复性	0.30	-1	0.30
$u_2(\overline{N_b})$	具备计数功能转速表 准确度	0.29	-1	0.29

C.5.4.2 合成标准不确定度的计算

由于各影响量彼此独立不相关,因此,合成标准不确定度:

$$u_{c}(\Delta N) = u_{c}(\overline{N_{b}}) = \sqrt{\left[c \cdot u_{1}(\overline{N_{b}})\right]^{2} + \left[c \cdot u_{2}(\overline{N_{b}})\right]^{2}} = 0.42\%$$

C.5.5 扩展不确定度的评定

取包含因子 k=2,则 $U=k \cdot u_c=1$ 次

THE REPORT OF THE PARTY OF THE 试验次数 y = 500 次,相对扩展不确定度: $U_{\text{rel}} = \frac{U}{|\mathbf{y}|} = \frac{1\%}{500\%} \times 100\% = 0.2\%$

C.5.6 扩展不确定度的报告与表示

计数误差的测量结果为:

$$\delta = -0.2\%$$
, $U_{\rm rel} = 0.2\%$, $k = 2_{\circ}$